Cyclopropanes and hypervalent iodine reagents: high energy compounds for applications in synthesis and catalysis.

نویسندگان

  • Davinia Fernández González
  • Filippo De Simone
  • Jonathan P Brand
  • Stefano Nicolai
  • Jérôme Waser
چکیده

One of the major challenges faced by organic chemistry is the efficient synthesis of increasingly complex molecules. Since October 2007, the Laboratory of Catalysis and Organic Synthesis (LCSO) at EPFL has been working on the development of catalytic reactions based on the Umpolung of the innate reactivity of functional groups. Electrophilic acetylene synthons have been developed using the exceptional properties of ethynyl benziodoxolone (EBX) hypervalent iodine reagents for the alkynylation of heterocycles and olefins. The obtained acetylenes are important building blocks for organic chemistry, material sciences and chemical biology. The ring-strain energy of donor-acceptor cyclopropanes was then used in the first catalytic formal homo-Nazarov cyclization. In the case of aminocyclopropanes, the method could be applied in the synthesis of the alkaloids aspidospermidine and goniomitine. The developed methods are expected to have a broad potential for the synthesis and functionalization of complex organic molecules, including carbocycles and heterocycles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(Diacetoxyiodo)benzene (DIB) catalyzed green and efficient synthesis of biscoumarin derivatives in aqueous media

(Diacetoxyiodo)benzene has been used as an efficient catalyst for an improved and rapid one-pot synthesis of biscoumarin derivatives in excellent yield under reflux condition using water as a environmentally benign reaction medium. This aqua mediated Knoevenagel condensation of various aromatic and hetero-aromatic aldehydes with 4-hydroxycoumarin using catalytic amount of (diacetoxyiodo)benzene...

متن کامل

(Diacetoxyiodo)benzene (DIB) catalyzed green and efficient synthesis of biscoumarin derivatives in aqueous media

(Diacetoxyiodo)benzene has been used as an efficient catalyst for an improved and rapid one-pot synthesis of biscoumarin derivatives in excellent yield under reflux condition using water as a environmentally benign reaction medium. This aqua mediated Knoevenagel condensation of various aromatic and hetero-aromatic aldehydes with 4-hydroxycoumarin using catalytic amount of (diacetoxyiodo)benzene...

متن کامل

Stereoselective synthesis of 5-7 membered cyclic ethers by deiodonative ring-enlargement using hypervalent iodine reagents.

Stereoselective synthesis of 5-7 membered cyclic ethers was achieved by deiodonative ring-enlargement of cyclic ethers having an iodoalkyl substituent. The reaction took place readily under mild conditions using hypervalent iodine compounds and an acetoxy or a trifluoroacetoxy group was introduced into the rings depending on the hypervalent iodine reagent employed. The use of hexafluoroisopropa...

متن کامل

Organoiodine(V) reagents in organic synthesis.

Organohypervalent iodine reagents have attracted significant recent interest as versatile and environmentally benign oxidants with numerous applications in organic synthesis. This Perspective summarizes synthetic applications of hypervalent iodine(V) reagents: 2-iodoxybenzoic acid (IBX), Dess-Martin periodinane (DMP), pseudocyclic iodylarenes, and their recyclable polymer-supported analogues. R...

متن کامل

Hypervalent Iodine with Linear Chain at High Pressure

Iodine is an element of fascinating chemical complexity, and numerous hypervalent iodine compounds reveal vital value of applications in organic synthesis. Investigation of the synthesis and application of new type of hypervalent iodine compound has extremely significant meaning. Here, the formation of CsIn (n > 1) compounds is predicted up to 200 GPa using an effective algorithm. The current r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chimia

دوره 65 9  شماره 

صفحات  -

تاریخ انتشار 2011